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An experiment was performed to measure near-wall velocity and Reynolds stress
profiles in a pressure-driven three-dimensional turbulent boundary layer. An initially
two-dimensional boundary layer (Reθ ≈ 4000) was exposed to a strong spanwise
pressure gradient. At the furthest downstream measurement locations there was also
a fairly strong favourable streamwise pressure gradient.

Measurements were made using a specially designed near-wall laser-Doppler ane-
mometer (LDA), in addition to conventional methods. The LDA used short focal
length optics, a mirror probe suspended in the flow, and side-scatter collection to
achieve a measuring volume 35 µm in diameter and approximately 65 µm long.

The data presented include mean velocity measurements and Reynolds stresses, all
extending well below y+ = 10, at several profile locations. Terms of the turbulent
kinetic energy transport equation are presented at two profile locations. The mean
flow is nearly collateral (i.e. W is proportional to U) at the wall. Turbulent kinetic
energy is mildly suppressed in the near-wall region and the shear stress components
are strongly affected by three-dimensionality. As a result, the ratio of shear stress to
turbulent kinetic energy is suppressed throughout most of the boundary layer. The
angles of stress and strain are misaligned, except very near the wall (around y+ = 10)
where the angles nearly coincide with the mean flow angle. Three-dimensionality
appears to mildly reduce the production of turbulent kinetic energy.

1. Introduction
Three-dimensional turbulent boundary layers have been the subject of considerable

research interest recently because of their technological importance and because
present models used on flows of engineering interest fail to predict them adequately.
A typical pressure-driven three-dimensional turbulent boundary layer is sketched in
figure 1. The cross-stream velocity component Un increases rapidly from zero at
the wall to a maximum which occurs close to the wall. In most three-dimensional
turbulent boundary layer experiments, the peak Un is found within 200 viscous
lengths of the wall. In some low-Reynolds-number experiments the peak is as low
as y+ = 30. We will refer to the region of the three-dimensional turbulent boundary
layer below the point of peak crossflow as the near-wall region. The near-wall region
is the critical part of the boundary layer: the turbulence production and stress levels
reach a maximum there, and the region accounts for the majority of the displacement
thickness.
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Figure 1. The canonical three-dimensional boundary layer.

The most useful models for three-dimensional turbulent boundary layers would be
universal streamwise and crossflow mean velocity profiles analogous to the law of the
wall. Early attempts to determine a universal crossflow profile have been essentially
abandoned, though theoretical limits have been addressed recently by Degani, Smith
& Walker (1993). Ölçmen & Simpson (1992) presented a brief review of three-
dimensional turbulent boundary layer experiments, and applied several variations of
the law of the wall. None of the relations adequately described all of the flows.

Calculation of the mean velocity profiles without the aid of a universal profile
requires a turbulence model. One- and two-equation scalar eddy viscosity models
are widely used, but are not appropriate for three-dimensional turbulent boundary
layers. Virtually every three-dimensional turbulent boundary layer experiment has
shown that the shear stress vector (consisting of components u′v′ and v′w′) is not
aligned with the strain rate vector

(
∂U/∂y, ∂W/∂y

)
, as shown in the reviews of

Ölçmen & Simpson (1993), Bettelini & Fanneløp (1993), Flack & Johnston (1993),
and Compton & Eaton (1995). Simple anisotropic eddy viscosity models have been
proposed (cf. Rotta 1977), but generally do not satisfy Galilean invariance. Algebraic
stress models and full second-moment closures are needed to capture the anisotropic
nature of the turbulence. Boundary layer turbulence structure is distorted by mean flow
three-dimensionality, complicating model development (Eaton 1995). For example,

the structural parameter a1

(
=
(
u′v′

2
+ v′w′

2)1/2
/q2
)

is consistently lower in three-
dimensional turbulent boundary layers than in comparable two-dimensional flows.
In some cases where an initially two-dimensional boundary layer is driven to three-
dimensionality by a spanwise pressure gradient, the Reynolds stresses fall, despite the
imposition of the additional strain rate (cf. Sendstad & Moin 1992).

By the late 1980s, there was some hope that a relatively simple model of the
structural distortion might be developed. For example, Anderson & Eaton (1989)
proposed that the reduction in a1 might be controlled by the non-dimensional radius
of curvature of a free-stream streamline and that the anisotropy might be controlled
by the amount of skewing between the wall and the free stream. At that time there
were not enough well-qualified data sets to test such a model. Unfortunately, new
experiments have muddled the picture (see the reviews cited above). The imposition
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of boundary layer skewing is usually accompanied by additional effects such as longi-
tudinal pressure gradient, wall curvature, or system rotation which impose their own
structural distortions on the turbulence. No consistent picture has emerged possibly
because the Reynolds stress measurements have been confined to the logarithmic
and wake regions of the boundary layer. These regions are especially sensitive to
wall curvature and adverse pressure gradients, accounting for the varied behaviour
seen in different experiments. Also, the effect of the mean flow three-dimensionality
may be fairly weak in the outer flow because the gradient in the crossflow velocity
(∂W/∂y) is small. The three-dimensional effects may be stronger and more consistent
in the near-wall region, where ∂W/∂y is of the same order as ∂U/∂y and may cause
substantial distortion of the turbulence.

It is not known whether the turbulence structure distortions extend into the near-
wall region. Johnston (1976) in a review of previous three-dimensional turbulent
boundary layer studies found evidence of collateral mean flow near the wall. There is
the possibility that the near-wall flow may be unperturbed by boundary-layer skewing.
However, the available data are still so sparse that it is impossible to say whether there
is a collateral region or whether the turbulence statistics differ from those in two-
dimensional boundary layers. To date, there have been only two three-dimensional
turbulent boundary layer experiments which include detailed Reynolds stress data
below y+ = 100. Flack & Johnston (1993) examined two low-Reθ three-dimensional
turbulent boundary layers in a large water channel using a three-component laser-
Doppler velocimeter to obtain data down to y+ ≈ 8. They concluded that there is
no near-wall collateral region, and that rapid turning of the free-stream velocity has
less effect on the turbulent stresses than does slower turning. Their measurements
of a1 collapse onto a single curve below y+ = 40. Ölçmen & Simpson (1994, 1995)
developed a high-resolution laser-Doppler anemometer (LDA) to study the near-wall
region in the vicinity of a wing–body junction. The complexity of this flow made it
difficult to draw general conclusions about the near-wall region.

1.1. Objectives

The primary goal of this study was to observe the behaviour of the Reynolds stresses
u′v′ and v′w′ in the region near the peak cross-stream velocity and approaching the
wall, in a moderate-Reynolds-number three-dimensional turbulent boundary layer.
With the anticipation that Reynolds stress transport models will eventually provide
improved predictions, we also measured triple products (including u′3, v′3, w′3, u′2v′,
u′v′2, v′2w′ and v′w′2) and streamwise and spanwise derivatives of the Reynolds stresses
in order to evaluate terms of the Reynolds stress transport equations. It is the aim of
this paper to interpret the data in terms of structure parameters, turning angles, and
contributions to the development of turbulent kinetic energy.

2. Facility and experimental methods
The experiment was performed in a closed-circuit wind tunnel operated at 12.5 m s−1,

with a 2 ft × 3 ft × 12 ft long test section. The boundary layer studied grows on a
horizontal Plexiglas test surface 12 in. above the floor of the tunnel. A 30◦ Plexiglas
wedge placed in the rear of the test section as shown in figure 2 produces the spanwise
pressure gradient to turn the streamlines. The wedge spans the entire working height
of the test section and blocks exactly half of the test section exit area. A 9.1 in.
thick fairing above the test surface relieves some of the favourable pressure gradient
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Figure 2. Test section (dimensions in inches).

caused by the wedge. The height of the test section increases linearly where the width
decreases, so that the open area decreases by a total of 20%.

Two test surfaces were used: one has an array of 89 static pressure taps; the other
is clear, for optical access. Both test surfaces used the same 3:2 elliptical nose, with
a boundary layer trip placed 6 in. downstream of the leading edge. The boundary
layers on the four test section walls were also tripped.

A three-hole pressure probe fabricated from 0.8 mm OD tubes was used to measure
mean velocity and skew angle. The probe was calibrated and used in the ‘non-nulling’
mode, i.e. calibration curves were used to determine the angle and velocity of the
approaching flow, without rotating the probe. Two ±0.5 in. H2O range pressure trans-
ducers (Setra, models 239 and 264), calibrated against a Combist micromanometer,
were used for all pressure measurements.

An X-array hot-wire probe, consisting of a DISA 55-P-51 dual-sensor hot-wire tip
mounted in a gooseneck probe, was used for the outer-layer turbulence measurements.
The two sensor wires are spaced approximately 1.0 mm apart and have an active
length of 1.25 mm. TSI IFA-100 constant-temperature bridges were used and the
signal was low-pass filtered at 20 kHz. Calibration of the crosswire was performed
in the free stream before and after each profile, using the angle calibration procedure
described by Westphal & Mehta (1985) and a King’s law fit.

During data acquisition, the crosswire probe was aligned with the direction of the
mean flow (determined from the three-hole probe) at every point in the profile. The
probe tip rotated about its own axis, and we acquired profiles of the boundary layer
in four of the probe’s ‘roll’ positions in order to obtain all the components of the
Reynolds stress tensor; u′v′ and u′w′ are direct measurements but v′w′ is indirect

To acquire the near-wall velocity and stresses, we developed a high-spatial-
resolution two-component laser-Doppler anemometer. The LDA optics, described
in detail in Compton & Eaton (1996), produce a measuring volume that is 35µm in
diameter and approximately 66 µm long. This size was chosen to be comparable to the
viscous length scale ν/uτ for this flow, about 30 µm. The high resolution is achieved
by placing the transmitting and receiving optics immediately below the test plate and
reflecting the transmitted beams from a 1 cm × 1 cm mirror which is suspended in
the flow downstream of the measurement location. This allows the use of short focal
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Figure 3. LDA optical path (not to scale).

length lenses and side-scatter collection, both of which serve to minimize the size of
the measuring volume.

Figure 3 shows a sketch of the optical path for the LDA. The Bragg cell splits
the collimated, single-frequency laser beam into three useful beams: a primary beam
and two secondary beams. The frequencies of the two secondary beams are shifted
by different amounts (typically 40 MHz and 41 MHz). The beams are focused
by the transmitting lens, forming one set of fringes by crossing the primary beam
with one of the secondary beams, and forming an orthogonal set of fringes by
crossing the primary beam with the third beam. The optical arrangement ensures
that the two sets of fringes are coincident. Light is collected in side scatter and
focused onto the tip of an optical fibre which acts as the field stop and transmits
the light to a photomultiplier tube. A Macrodyne 3102 frequency domain processor
determines both velocity components by splitting the frequency range as suggested by
Johnson (1990). Therefore, coincidence of the two-component velocity measurements
is guaranteed. The two measured frequencies are passed to an IBM-compatible
computer via GPIB. There are two configurations for the LDA optics: one produces
simultaneous measurements of the U and V velocity components and the other
measures the V and W components. With these two configurations, we directly
measured the mean velocity, the Reynolds normal stresses, the u′v′ and v′w′ shear
stresses, and triple products.
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Quantity Uncertainty

U, V ,W ±3% of U

u′2, v′2, w′2 ±5% of u′2

u′v′, u′w′ ±10% of u′v′

v′w′ ±15% of u′v′

Table 1. Crosswire uncertainties, from Anderson & Eaton (1989)

2.1. Uncertainty

Uncertainties in the near-wall LDA measurements arise from finite sample size, veloc-
ity bias, and finite spatial extent of the measuring volume. The statistical uncertainty
in the mean at 95% confidence amounts to less than 1% of the mean velocity even
in the region of highest relative turbulence intensity. The statistical uncertainty in
the Reynolds stresses is approximately 4% of the measured stress. Adams, Eaton &
Johnston (1984) developed a ‘worst case’ analysis of velocity bias, which yields for our
system a peak error in the measured U of 0.8uτ at y+ = 7. Their analysis is excessively
conservative and the true bias is likely to be much smaller. Analysis (Compton &
Eaton 1995) shows that the finite extent of the measuring volume is responsible for
peak errors of approximately 0.1uτ

2 in the normal stresses, and of 0.003uτ in the mean
velocity, near the wall where the gradients are largest. The largest potential error in
the Reynolds stress transport terms is due to inaccuracies in ∂U/∂y near the wall
where the production terms are largest. At y+ = 10 the potential error in ∂U/∂y is
3% of the calculated ∂U/∂y, based on the calculated uncertainty in U.

In addition to the uncertainty mentioned above, there is a small systematic bias due
to contributions to the stress measurements from u′w′. The measuring volume was
inclined 6◦ to the wall, which generated a crosstalk of u′w′ with the other Reynolds
stresses. The normal stresses u′2 and w′2 are off systematically by 3% of u′w′, and
the u′v′ and v′w′ shear stresses are off by approximately 12% of u′w′. The v′2 and
q2 measurements are not affected by u′w′. Of course, for two-dimensional boundary
layers u′w′ is identically zero. In the outer part of the boundary layer, we have
crosswire measurements of u′w′, which illustrate that the u′w′ bias is small. Near the
wall in a strongly turned boundary layer, u′w′ can become as large as u′v′, so u′v′ and
v′w′ could be under-reported by as much as 12% of u′v′. This would correspond to a
maximum 15% error in v′w′ for our farthest downstream station.

For three-hole probe measurements, Anderson & Eaton (1989) reported uncertain-
ties in the measurements for a probe of identical design to be ±0.2 m s−1 in velocity
magnitude and ±1.0◦ in direction. For crosswire measurements, we used the same
probe tip as Anderson & Eaton (1989), and cite in table 1 the uncertainty levels
which they assigned. Because v′w′ is measured indirectly, that stress has the highest
uncertainty.

3. Mean flow
Data are presented here for seven profile stations measured along the wind tunnel

centreline. The most upstream station (A), located 17 in. upstream of the tip of the
wedge, is taken as the reference position. The other measurement positions are listed
in table 2. The x′-coordinate is the tunnel centreline with its origin at the reference
location. The y-coordinate is normal to the wall, and the positive z-direction is
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Profile

A C D E F G H

x′ (in.) 0 7.0 10.5 14.0 17.5 21.0 26.5
z (in.) 0 0 0 0 0 0 0
β (deg.) 0.14 1.81 3.52 5.63 7.90 10.57 14.36
Qe (m s−1) 12.43 12.40 12.40 12.37 12.35 12.47 13.08
δ99 (mm) 36.3 38.5 41.6 43.1 45.2 49.5 56.5
δ∗ (mm) 5.78 6.24 6.74 7.13 7.60 8.51 9.52
θ (mm) 4.22 4.56 4.90 5.19 5.53 6.19 7.04
H ≡ δ∗/θ 1.37 1.37 1.38 1.38 1.38 1.37 1.35

Reδ∗ 4692 5058 5458 5766 6136 6931 8139
Reθ 3431 3693 3968 4192 4460 5047 6016

Qτ (m s−1) 0.506 0.499 0.491 0.489 0.488 0.500 0.558
Cf/2× 10−3 1.66 1.62 1.57 1.57 1.56 1.61 1.82

Cf/2× 10−3 2D† 1.63 1.60 1.57 1.55 1.53 1.48 1.42

† Formula for two-dimensional boundary layers based on Reθ

Table 2. Boundary layer parameters from pressure data

chosen to form a right-handed coordinate system and points away from the wedge.
The free-stream velocity at the reference position was 12.5 m s−1.

The static pressure distribution is represented in terms of the pressure coefficient
in figure 4(a):

Cp =
p− pref
1
2
ρUref

2
, (3.1)

where pref and Uref are the static pressure and free-stream velocity at the reference
position. The data are plotted along lines of constant z with the centreline highlighted.
The pressure rises approaching the wedge for negative values of z, but is nearly
constant along the centreline until approximately x′ = 17 and then falls off as
the flow accelerates past the wedge. There is a strong spanwise pressure gradient
upstream of the wedge, which acts to turn the flow into the angled exit passage.
Figure 4(b) presents the derivatives of the static pressure in tunnel coordinates and
in coordinates aligned with the local free-stream velocity.† For most of the boundary
layer, |∂Cp/∂z| is much greater than |∂Cp/∂x|. The streamwise pressure gradient
is nearly zero up to measurement station E and remains small up to station F.
The pressure gradient is strongly favourable beyond the wedge tip. The derivatives
show the same basic behaviour in free-stream coordinates. The streamwise pressure
gradient, ∂Cp/∂s, is small compared to ∂Cp/∂n, except toward the exit where the
pressure gradient is predominantly streamwise. The strongest curvature is at station
F, where δ99∂Cp/∂n = −0.034 and δ99∂Cp/∂s = −0.010. This is stronger turning than
in the experiment of Schwarz & Bradshaw (1992), but weaker than that in Anderson
& Eaton (1989).

The mean velocity magnitude profiles are featured in figures 5 and 6. In figure 5
the data are non-dimensionalized by Qe and δ99, both of which are listed in table 2.
The velocity magnitude profiles look like ordinary boundary layer profiles until the
last station (H) where there is clear evidence of an inner layer resulting from the

† We have defined (s, y, n) coordinates to be right-handed, a rotated version of the (x, y, z) tunnel
coordinates. This makes n point inward toward the centre of curvature, which is not consistent with
the usual casting of Euler’s equation in streamline coordinates.
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Figure 4. (a) Static pressure distribution near the wedge. (b) Static pressure derivatives,
normalized by δ99 at station D. Wedge tip is at x′ = 17 in.

imposition of a favourable pressure gradient. There has been considerable debate as
to whether it is appropriate to expect three-dimensional boundary layers to conform
to the law of the wall. Figure 6 is a relatively unbiased representation of the fit to the
law of the wall. To calculate the friction velocity Qτ we used the pressure data, and
assumed that the law of the wall holds for the velocity magnitude:

Q/Qτ =
1

κ
ln(yQτ/ν) + B. (3.2)

Here, we used κ = 0.41 and B = 5.0. Our analysis program iterated to obtain
constant Qτ in the region 40 6 y+ 6 150. In reducing the LDA data, we determined
the wall offset by optimizing the data’s fit to u+ = y+, so the profile collapse in
this region is not surprising. All the pressure profiles tend to rise above the line
slightly at first, then dip below it. They then rise well above the line to form a
‘wake’ region. The profile at station G is mildly distorted by the favourable pressure
gradient. Table 2 lists the skin friction coefficient determined from the profile fit,
compared to the analytically predicted value for two-dimensional boundary layers,
Cf/2 = 0.0125Reθ

−0.25 (Kays & Crawford 1980). The good agreement between the
measured and predicted Cf at small turning angles indicates that we may expect some
two-dimensional correlations to work in this region of three-dimensionality. The points
farther downstream have skin friction coefficients greater than the two-dimensional
correlation, indicating the favourable streamwise pressure gradient’s influence on the
mean velocity profiles.

Table 2 also lists the boundary layer integral parameters,

δ∗ ≡
∫ ∞

0

(
1− Us

Ue

)
dy; θ ≡

∫ ∞
0

Us

Ue

(
1− Us

Ue

)
dy. (3.3)
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The mean flow angle profiles are presented in figure 7, relative to the free-stream
turning angle β (also tabulated in table 2). The turning angle γ − β is positive,
indicating that the flow near the wall is rotated at a greater angle than the free
stream, as is expected. For the most part, γ − β increases monotonically toward
the wall down to about y+ = 20, below which the angle is approximately constant,
indicating the presence of a near-wall collateral region. At station G the trend of
the angle reverses below y+ = 20 with the angle decreasing toward the wall. At the
farthest downstream station (H), the skewing through the boundary layer reaches a
maximum of 24◦. The turning angle decreases approaching the wall for much of the
boundary layer at this station; this is related to the rapid reduction in the cross-
stream pressure gradient. The LDA data show considerable scatter in the one or two



198 D. A. Compton and J. K. Eaton

20

1 10 102

D
E
F
G

y +

c–b

LDA

30

10

0

103 104

Pressure
A
C

H

Figure 7. Mean velocity angle. LDA data and pressure data.

0.4

0.3

0.2

0.1

0 20 40 60 80

A
C
D
E
F
G
H

y (mm)

Un

Qe

Figure 8. Spanwise velocity. Pressure data.

points nearest the wall. This is because different LDA setups are used to measure
the U and W velocity components. A slight offset in the vertical positioning can
result in significant error in the angle because of the steep velocity gradients near the
wall.

The cross-stream velocity component Un(= W cos β − U sin β) is shown in figure
8. The location of maximum cross-stream velocity continues to move outward as the
flow develops, even though the skewing is continually increasing.

We also represent the mean velocities using a hodograph, figure 9, which shows
the spanwise component of velocity as a function of the streamwise component.
The curves show an approximately triangular shape, as predicted by Johnston
(1960). There is excellent agreement between the LDA data and the three-hole
probe data throughout most of the boundary layer. Near the inner edge of the
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pressure profiles, agreement is not as good, most likely due to small angle er-
rors in the three-hole probe data as the probe approaches the wall. The most
striking feature of this plot is that the flow near the wall appears to be almost
collateral.

4. Turbulence statistics
Turbulence quantities in the three-dimensional turbulent boundary layer were mea-

sured using both LDA and crosswires at stations D, E, F, and G. The Reynolds
stresses are presented in the tunnel coordinate system, normalized by the friction
velocity (as found using (3.2)) and plotted in semi-log coordinates against y+ to
emphasize near-wall features.

The Reynolds normal stresses are shown in figures 10(a)–10(c). The upstream
profiles look much like two-dimensional boundary layer profiles, with u′2 consistently
reaching a peak near y+ = 15 (cf. Purtell & Klebanoff 1981; Spalart 1988), and with
w′2 smaller than u′2, and v′2 smaller yet. The peak in u′2 diminishes in amplitude at
the farthest downstream stations. There is general collapse among the u′2 data in the
region below y+ = 10. The v′2 data nearly collapse when scaled in wall coordinates:
the three-dimensionality apparently does not have a strong effect on v′2. As the flow
develops, the level of w′2 gradually increases, with a peak appearing in the near-wall
region. At station G, this peak is near y+ = 15. The agreement is generally quite good
between the LDA data and the crosswire data in the region where the two datasets
overlap.

Figure 11 shows the development of q2(≡ u′2 + v′2 + w′2) which reaches a peak
near y+ = 10, falls to a plateau in the range 40 < y+ < 300, then falls off steeply
at the edge of the boundary layer. With increasing three-dimensionality, the plateau
region appears to grow flatter, and in the outer part of the boundary layer we see a
mild increase in turbulent kinetic energy. In the near-wall region the turbulent kinetic
energy profiles collapse, indicating a trade-off between u′2 and w′2. This trade-off
suggests simple rotation of the stress tensor, but our attempts to explain it in terms
of rotation fail.
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Figures 12(a) and 12(b) show the streamwise and spanwise shear stresses. The
−u′v′ stress does not collapse as well in the region y+ < 10 as the normal stresses
do. Collapse of −u′v′ in the near-wall region is not necessarily expected, since the
streamwise pressure gradient will affect the shear stress. We note that there is a distinct
decrease in −u′v′ with increasing three-dimensionality. Our data differ from those of
Flack & Johnston (1993), who observed shear stresses collapsing up to y+ = 50. The
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−v′w′ shear stress develops with increasing three-dimensionality. At station G the
peak −v′w′/uτ2 is about 0.5 near y+ = 10 to 20, which is almost as large as −u′v′/uτ2

at that point. We note that the crosswire fails to capture the major part of the v′w′

stress.

4.1. Angles of stress and strain

An isotropic eddy viscosity formulation is only valid if the shear stress angle γτ (≡
arctan(v′w′/u′v′)) is identical to the mean strain angle γg (≡ arctan[(∂W/∂y)/(∂U/∂y)]).
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Figure 13. Flow angles at the four stations D, E, F and G.
Solid lines indicate γ from pressure data.

These angles, along with the mean flow angle γ, are plotted in figure 13. Throughout
most of the boundary layer, the angles of stress and strain do not agree. Most of
the experiments in the literature demonstrated that the shear stress vector lagged the
mean strain vector. Our data demonstrate the same lag through most of the boundary
layer. Station F shows that (γτ − γ) is less than (γg − γ) by as much as 20◦. However,
below y+ = 30 the angles nearly coincide, and the difference between γτ and γg near
y+ = 10 is negligible. Below y+ = 8 scatter prevents us from drawing further con-
clusions; some of the points nearest the wall have been omitted. Agreement between
the flow angle γ and the gradient angle γg is not expected. However, if the flow is
collateral at the wall, γg and γ should be the same in the viscous sublayer. The angle
data uphold the idea of collateral flow at the wall, showing close agreement at all
stations around y+ = 8.

The eddy viscosity ratio Ne is used as a measure of the anisotropy of the tur-
bulence, and can be used as the basis of a simple turbulence model. Usually, Ne is
defined as the ratio of the spanwise eddy viscosity to the streamwise eddy viscos-
ity in a coordinate system aligned with the local mean flow. It can be represented
as

Ne ≡
tan (γτ − γ)
tan (γg − γ)

. (4.1)

There are serious flaws with the concept: first, that two misaligned vector quan-
tities should be related by a simple scalar proportion, and second, that a prac-
ticable coordinate system could everywhere have a different orientation through-
out the flow field. We calculated Ne for these data and found that it is always
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less than 0.8 but varies broadly with no significant trend. Earlier experiments
have shown the eddy viscosity ratio ranging between 0.1 and 1.2. The use of
an anisotropic eddy viscosity model based on Ne is not supported by the present
data.

4.2. Structural parameters

Figure 14 shows Townsend’s structure parameter a1, which can be thought of as the
‘efficiency’ of the turbulence in generating shear stress. The value of a1 is generally
around 0.15 for two-dimensional boundary layers, even in the presence of moderate
pressure gradient, but many three-dimensional turbulent boundary layer studies have
found a1 to drop below that value. The crosswire data show the behaviour of a1 in
the outer part of the boundary layer. Near y+ = 1000, a1 is at its highest, ranging
between 0.12 and 0.14. Profile G has the lowest values of a1. The LDA data are noisier
but also indicate suppressed values of a1. It appears that reduced values of shear
stress (figure 12a) are the cause of the suppression of a1. Flack & Johnston observed
that for their 30◦ bend flow, a1 took on a consistent profile from the wall to about
y+ = 50, then fell to values around 0.11. We do not observe this near-wall agreement.
This may be due to our experiment’s higher Reynolds number and stronger curvature.
The experimental uncertainty in the measurement of a1 is quite high, so it is difficult
to draw broader conclusions.

Figure 15(a) shows the turbulence structure parameter (u′2 + w′2)/v′2, which is also
invariant to rotation about the y-axis. The value of this parameter is 2 in isotropic
turbulence. In the present flow (u′2 + w′2)/v′2 is around 3 toward the outer edge of
the boundary layer, and increases toward the wall. Owing to the wall’s damping of
v′2, eddies shift their turbulent kinetic energy from v′2 to the other two components.
We find that the further downstream stations have significantly decreased values
of (u′2 + w′2)/v′2. This trend suggests a marked tendency toward isotropy near the
wall.

Figure 15(b) shows the ratio of wall-normal fluctuations to the shear stress mag-

nitude, v′2/
(
u′v′

2
+ v′w′

2
)1/2

. Ölçmen & Simpson (1995) investigated this parameter
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Figure 15. (a) (u′2 + w′2)/v′2 turbulence structure parameter; (b) v′2/τ turbulence structure
parameter.

for their flow and for several others, and found a region of approximately constant
v′2/(τ/ρ) above y+ = 50 and below y/δ99 = 0.5. Our data do not show this plateau
region; instead they agree well with the two-dimensional boundary layer simulation
of Spalart (1988). The present data, like Ölçmen & Simpson’s, exhibit an upward
trend for y+ < 8, which must be a result of inaccuracies in the measurement system
and not an artifact of three-dimensionality. Three-dimensionality apparently has little
effect on v′2/(τ/ρ) for this flow.

5. Reynolds stress transport
The transport equation for turbulent kinetic energy is

Uk

∂(q2)

∂xk
=

Pii︷ ︸︸ ︷
−2u′iu

′
k

∂Ui

∂xk
+

Dii︷ ︸︸ ︷
2ν
∂u′i
∂xk

∂u′i
∂xk

+
∂

∂xk

Jiik︷ ︸︸ ︷[
−2

ρ
p′u′k − u′iu′iu′k − ν

∂(q2)

∂xk

]
. (5.1)

The advection, production, triple-product transport, and viscous transport terms
were simplified and measured directly at stations D and G. Acquiring additional
profiles allowed accurate calculation of streamwise and spanwise derivatives. These
additional profiles form ‘diamond’ patterns, as indicated in figure 2. To calculate wall-
normal derivatives, we used parabolic central first- and second-derivative formulas
for unevenly spaced data.

To simplify the turbulent kinetic energy transport equation, production terms
containing u′w′ were eliminated following Pierce & Ezekewe (1976). Using the thin



Near-wall three-dimensional boundary layer 205

1 10 102 103

y+

(a)
1.0

0.5

0

–0.5

–1.0

Advection
Production

Turb. transport
Visc. transport
Dissipation

Te
rm

× 
ν/

u
s4

1 10 102 103

y+

(b)
1.0

0.5

0

–0.5

–1.0

Figure 16. Terms of Reynolds stress transport equation for q2, inner scaling: (a) station D,
(b) station G.

0 0.1 0.2 0.3

y /d99

(a)40

20

0

–20

–40

Advection
Production

Turb. transport
Visc. transport
Dissipation

Te
rm

×
d 99

/u
s3 (b)

0.4 0.5 0 0.1 0.2 0.3

y /d99

40

20

0

–20

–40
0.4 0.5

Figure 17. Terms of Reynolds stress transport equation for q2, outer scaling. Dashed curve
indicates two-dimensional dissipation rate correlation: (a) station D, (b) station G.

shear layer assumption to simplify the viscous transport term and order of magnitude
arguments to simplify the production and triple product terms, the equation reduces
to

advection︷ ︸︸ ︷(
U
∂

∂x
+ V

∂

∂y
+W

∂

∂z

)
q2 =

production︷ ︸︸ ︷
−2

(
u′v′

∂U

∂y

)
− 2

(
v′w′

∂W

∂y

)
+

dissipation︷︸︸︷
Dii

turbulent transport︷ ︸︸ ︷
− ∂

∂y
(u′2v′ + v′3 + v′w′2)

viscous transport︷ ︸︸ ︷
−ν
(
∂2q2

∂y2

)
(5.2)

where the dissipation term Dii implicitly contains the pressure transport terms and is
inferred by difference.

Figure 16(a, b) shows the transport terms for q2 at stations D and G plotted in inner
coordinates. Figure 17(a, b) shows the same data with a greatly expanded vertical scale
to show the outer layer development. Experimenters usually present these terms in
outer coordinates, without the near-wall measurements. It is obvious from figure 16
that the transport terms are orders of magnitude larger in the inner region than in
the outer part of the log region and the wake.

The production and dissipation of turbulent kinetic energy are nearly balanced
throughout the layer with a small contribution of viscous transport very near the
wall. The peak production occurs very near the wall in both cases. The turbulent
kinetic energy production should drop to zero at the wall, while the dissipation
should not. There are small differences between the production rate profiles for the
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two positions. Station G exhibits slightly higher production at y+ = 10 and somewhat
lower production at y+ = 100 (y/δ ≈ 0.08). Moin et al. (1990) found suppression of
turbulent kinetic energy production in their direct numerical simulation of a channel
flow subjected to a suddenly applied transverse pressure gradient.

The advection, viscous transport, and turbulent (triple product) transport terms
are generally much smaller than the production and dissipation terms. The advec-
tion and turbulent transport terms reach small (negative) peaks below y+ = 20,
with the advection reaching a peak closer to the wall than the turbulent transport.
Spalart’s (1988) two-dimensional boundary layer computation showed that advec-
tion should be negligible near the wall, while the turbulent transport reaches a
negative peak around y+ = 10. The viscous transport is important below y+ =
20.

Also shown on figure 17 is an empirical relation for the dissipation which generally
performs well in two-dimensional boundary layers:

ε =
(τ/ρ)3/2

0.1 δ99

. (5.3)

Bradshaw & Pontikos (1985), Littell & Eaton (1994), and Schwarz & Bradshaw
(1992) all showed that this relation underpredicts the actual dissipation rate in the
region y/δ99 6 0.4. The present data show the same trend with the underprediction
worsening close to the wall.

The measurements of the transport terms for the two main shear stresses are
presented in detail in Compton & Eaton (1995). The terms in the u′v′ were found
to agree reasonably well with the two-dimensional boundary layer simulation results
of Spalart (1988) at station D. However, production was reduced by 10% to 20%
near the wall at station G, balanced by changes in the pressure–strain term. We
also derived a transport equation for a1 and found that the production term is
approximately

Pa1
≈
(

2

(
τ

ρ

)2

− v′2q2

)
1

q4τ/ρ

(
u′v′

∂U

∂y
+ v′w′

∂W

∂y

)
. (5.4)

Our data also indicate that this term is reduced near the wall in our flow. A model
based on a1 transport may thus be capable of accounting for the reduction of shear
stresses observed in most three-dimensional turbulent boundary layers.

6. Summary
We have examined a three-dimensional turbulent boundary layer formed by turn-

ing an initially two-dimensional boundary layer by a strong spanwise pressure gra-
dient. The streamwise pressure gradient was initially very mild but became strongly
favourable by the final station studied. The near-wall measurements obtained using a
special high-resolution LDA have revealed several features of the boundary layer that
have not previously been observed. First, we have observed a nearly collateral region
in the mean velocity profile below y+ = 20. This results in an alignment of the flow
angle and the velocity gradient angle in the viscous sublayer. More importantly, the
shear stress vector aligns with the velocity gradient vector below y+ = 20 suggesting
that a scalar eddy viscosity is appropriate for the crucial near-wall region. Outside
the near-wall region, the directions of the shear stress and strain rate vectors deviate
by as much as 20◦.
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As the three-dimensionality develops, the w′2 profile grows a peak near y+ = 10.
The increase in w′2 nearly makes up for the decrease in u′2 so the turbulent kinetic
energy is only mildly suppressed in the near-wall region. The shear stresses are more
strongly affected by three-dimensionality. The streamwise shear stress −u′v′ begins
much like a two-dimensional boundary layer. With increasing three-dimensionality,
it displays a marked decrease, by as much as 30%. The spanwise shear stress grows
to peak values as high as 0.5u2

τ . Both components of the shear stress vector show
collapse very near the wall (y+ < 10) in inner coordinates, but they diverge above that
region. The structural parameter a1 is suppressed throughout most of the boundary
layer, since the magnitude of the shear stress decreases more than the magnitude of
the turbulent kinetic energy.

Correct modelling of the near-wall region is crucial since that zone dominates the
production of turbulence, contains the highest shear stress gradients, and accounts
for most of the displacement thickness. The present study shows that the near-wall
turbulence behaviour cannot be inferred by extrapolating trends from measurements
in the logarithmic and wake regions. The present near-wall measurements have not
been corroborated by other studies. Flack & Johnston (1993) found considerably
different results in a boundary layer at much lower Reynolds number and with
milder skewing. Further studies capable of resolving the near-wall region of three-
dimensional turbulent boundary layers are needed in order to develop appropriate
models capable of realistically capturing three-dimensional effects.

This work was supported by the Department of Energy (grant number DE-FG03-
93ER14317-A000) and NASA-Ames Research Center (grant number NCC2-5001).
We also extend our gratitude to Professor Peter Bradshaw for his input on Reynolds
stress transport.
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